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ABSTRACT 

Identifying potential damage is crucial in preventing the sudden and premature failure of aging 

constructions, which has received much attention over the years. This paper suggests an approach 

where no expensive external excitation equipment is needed. The vehicle-induced dynamic 

acceleration time series response has been analyzed using a statistical model and statistical distance 

measurement tool to detect damage to the bridge. The acceleration response depends on many factors, 

including Vehicle-Bridge Interaction (VBI), vehicle speed and road roughness.  

 

This work is based on a MATLAB and R programming language simulation. The half-car model is 

used in this simulation to simplify the analysis of the dynamics of the suspension system, as this 

model has only four degrees of freedom. The car is separated into two parts in this model: the sprung 

mass (which consists of the vehicle's body and the mass of its occupants) and the unsprung mass 

(which includes the wheels, tires, and part of the suspension system). The vehicle model is based on 

the H20-44 truck included in the American Association of State Highway and Transportation Officials 

(AASHTO) specifications. 

 

A finite element model of a real-life existing bridge, the pre-stressed concrete (PC) bridge named 

Teesta Bridge, situated in the northern part of Bangladesh, is used in this simulation. The bridge is a 

supported PC I-girder and consists of five girders with a 200 mm thick deck slab. The Vehicle-Bridge 

Interaction (VBI), vehicle speed, and road roughness all impact the acceleration response data of a 

bridge. Dynamic bridge structural subsystem and vehicle subsystem models, interaction constraints, 

and road roughness are all factors in the interaction between automobiles and bridges.  

 

Using the Finite Element Method, mode superposition method, and D'Alembert's principle, two sets 

of equations of motion are obtained, one for the bridge and the other for the vehicle. Finally, the 

Newmark-beta method is applied to solve the coupled dynamic problem, and the bridge acceleration 

time series response is found. Bridge road surface roughness is considered in the analysis as different 

acceleration responses are generated for different observations due to the presence of randomness. A 

statistical model, the Autoregressive Integrated Moving Average (ARIMA) model, is used to fit the 

acceleration time series response originating from healthy and damaged cases. The model parameters 

are sorted into a matrix called the ARIMA parameter matrix. Then, a statistical distance measurement 

tool (Mahalanobis Distance) is used here to measure the distance among the ARIMA parameter 

matrices of healthy and damaged cases, and the presence of any anomaly indicates the existence of 

damage to the bridge. This proposed technique can identify the existence of damage as well as the 

location and relative severity of the damage. 

The findings of this study demonstrate how the statistical model parameters and statistical distance 

measurement tools can be utilized to identify damage and assess its relative severity at any point 

along the bridge span. The effect of varying pavement roughness conditions plays a vital role in this 

study, as different acceleration time series responses are generated for each observation. 

 

Keywords: Damage Identification, Vehicle-bridge interaction, Vehicle-induced dynamic acceleration, 

Newmark's-β Method, Pavement roughness. 
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1. INTRODUCTION 

Damage is defined as any change to a structure that has a detrimental impact on its functionality or 

safety, such as material deterioration or boundary condition deterioration. Over time, civil 

infrastructure, like bridges, sustains damage from both human and natural causes. Because of 

structural aging, older structures are more vulnerable to natural failure. Environmental effects and the 

overburdening of the bridge both increase the potential for structural failure. It is crucial to have 

accurate information about the bridge's health and identify potential harm. Additionally, this allows 

for better planning of bridge repairs, reducing traffic disturbance and preventing premature collapse. 

Many bridges have typically been visually inspected regularly (like once a year) to check for 

damages. Although these techniques essentially work effectively, there are also some crucial 

downsides. Structural Health Monitoring (SHM) techniques have methodologies. Engineers and asset 

owners can enhance the systems by using the information supplied by SHM systems. The time series 

analysis of the dynamic response to detecting damage has received much attention. A combination of 

time series modeling and outlier detection techniques have been used in most studies focusing on 

detecting damage using statistical pattern recognition techniques. To detect the damage using the 

statistical pattern recognition technique, the statistical model parameters have been used as damage-

sensitive features. Sohn et al. used a statistical process-controlled technique where the Auto-

regressive (AR) model coefficients were used as damage-sensitive features(Sohn et al., 2000). Using 

X-bar control charts, different levels of damage in a concrete column were identified. Worden et al. 

and Sohn et al. used Mahalanobis distance to identify structural changes in numerical models and 

different structures (Farrar et al.; K., 2007). Worden et al. used the transmissibility function, whereas 

Sohn et al. used AR model coefficients as damage-sensitive features. Omenzetter and Brownjohn used 

auto-regressive integrated moving average (ARIMA) models to analyze a building’s static strain 

during its construction phase (Omenzetter & Brownjohn, 2006). Although they could detect different 

structural changes, they could not detect the nature, severity, and location of the structural change. 

Nair et al. used an auto-regressive moving average (ARMA) model and the first three AR coefficients. 

Those authors found two different damage localization indices using AR coefficients(Nair et al., 

2017).  

Zhang proposed another method. The author used a combination of AR and auto-regressive models 

with exogenous output (ARX models) to identify damage, including the damage location (Zhang et 

al., 2022). The ARX model's residuals' standard deviation was used as a damage-sensitive feature. A 

numerical study verified this methodology. In another recent study, Carden and Brownjohn utilized 

the Auto-regressive moving average (ARMA) model and a statistical pattern classifier that uses the 

sum of the squares of the residuals of the ARMA model (Peter et al., 2008). However, the authors 

stated that the vibration data was generated using external excitation and may not apply to structures 

with only ambient vibration dynamic excitation. 

This study proposes a novel data-driven-based technique to detect damage to a prestressed I-girder 

bridge. A finite element simulation of a prestressed I-girder bridge, whose properties were taken from 

a real-life existing bridge, is used here. This work uses a statistical model to fit the bridge's dynamic 

acceleration time series response due to vehicle bridge interaction vibration. The parameters of the 

best-suited statistical model have been found, and they are fed to a statistical distance measurement 

tool called Mahalanobis distance to identify the anomalies among the different sets of parameters 

(Healthy and Damaged cases). However, there are several challenges to be overcome before applying 

this technique. For instance, environmental and various operational effects may cause significant 

changes in the structure's dynamic characteristics, and those impacts can mask the actual damage 

detection techniques. The statistical pattern recognition technique has been very popular as real-life 

applications have many uncertainties. 

2. METHODOLOGY 

The methodology in this paper utilizes a Statistical distance measurement tool-based anomaly 

detection process in conjunction with Auto-regressive integrated moving average (ARIMA) time 

series modeling. The statistical distance measurement tool that has been used is Mahalanobis distance. 

The main goal of this paper is to present a modified technique by implementing surface roughness 
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while constructing the ARIMA models. The randomness in the surface roughness will generate new 

observations every time the vehicle passes over the bridge. As for the vehicle, a half-car model is 

used, which is based on the H20-44 truck included in the American Association of State Highway and 

Transportation Officials (AASHTO) specifications. Moreover, a finite element model is used for the 

bridge, and the properties are taken from a real-life existing bridge. The whole work is based on a 

MATLAB and R programming languages simulation. Utilizing the mode superposition method and 

D'Alembert's principle, two sets of equations of motion are obtained, one for the bridge and the other 

for the vehicle. Finally, the Newmark-beta method is applied to solve the coupled dynamic problem, 

and the bridge acceleration response is found. Different damaged case scenarios were created utilizing 

MATLAB codes, and acceleration responses were generated for healthy and different damaged cases. 

The difference in acceleration responses for both cases was sought to be detected. In this context, the 

acceleration time series data were fitted to a statistical model, specifically, the Autoregressive 

Integrated Moving Average (ARIMA) model. The statistical distances between ARIMA parameter 

matrices were measured using a statistical distance measurement tool, the Mahalanobis Distance. The 

anomalous distance was observed to indicate the existence of damage, along with the precise location 

and severity. 

2.1 Time Series Analysis 

A time series model is a statistical model used for analyzing and modeling data points 
collected over some time. It is utilized to identify statistical patterns, trends, and 
dependencies in time-history data. The current value of the time series is modeled as 
a linear combination of its past observations. The models can be either univariate, 
considering only one variable, or multivariate, considering multiple variables. To 
construct a perfect statistical model that can fit the time series data better compared 
to other models, we need to observe our time series data first. Based on the data 
stationarity, a statistical model can be chosen among the Auto-regressive model (AR), 
Auto-regressive Integrated Moving Average model (ARIMA), or Auto-regressive 
Moving Average model (ARMA). 

2.2 Auto-regressive Integrated Moving Average Model 

Vehicle passing over the span is observed and found as stationary time series data.  A stationary time 

series data refers to a time series where the statistical properties remain constant over time. That 

means the mean, variance, and autocovariance structure of the data do not change their values over 

time. Using the Augmented Dickey-Fuller (ADF) test, the acceleration time series data is proved to be 

stationary time series data. The AR or ARIMA model can be utilized for the stationary time series 

data. AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion) are used to 

measure the goodness of a fit. AIC and BIC are used to compare different statistical models. AIC is 

based on the principles of information theory and is used to evaluate the relative quality of different 

statistical models. BIC is also the same criterion that is derived from Bayesian principles. Both criteria 

balance the trade-off between goodness of fit and model complexity. The lower the value of AIC and 

BIC, the better the statistical fit is. Eventually, an ARIMA statistical model is chosen as this model is 

more flexible than an AR model. ARIMA model consists of three components: autoregressive (AR) 

part, differencing (I) part, and moving average (MA) part. Thus, an ARIMA model can be stated as 

ARIMA (p, d, q) where p indicates AR parameters, d indicates differencing order, and q indicates the 

MA parameters. ARIMA model can capture both short-term dependencies (MA) and long-term 

dependencies (AR) in the data. Multiple trial and error processes were performed to determine the 

parameters of the ARIMA model, and their AIC and BIC values were calculated using MATLAB 

software. Eventually, for the goodness of fit, the ARIMA (3,0,2) model is chosen to fit the 

acceleration time series data. The differencing order is found to be zero, again proving the 

acceleration data's stationarity. The general formula of a pth order ARIMA is defined as follows: 

𝑦(𝑡)  =  𝑐 +  𝜑₁𝑦(𝑡 − 1)  +  𝜑₂𝑦(𝑡 − 2) + . . . + 𝜑ₚ𝑦(𝑡 − 𝑝)  −  𝜃₁𝜀(𝑡 − 1)  −  𝜃₂𝜀(𝑡

− 2) − . . . − 𝜃ₚ𝜀(𝑡 − 𝑞)  +  𝜀(𝑡)  
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Here, y(t) is the time series value at time t, c is a constant, φ is autoregressive (AR) coefficients, θ is 

moving average (MA) coefficients, and ε(t) is the error term at time t (Chatfield, 2003). 

2.3 Anomaly detection 

Anomaly detection means the identification of specific data clusters that deviate significantly from the 

expected behavior of the data clusters. It is a widespread statistical pattern recognition technique. 

Abnormal data points are assumed to be generated from the erroneous segment of the bridge. In this 

paper, a statistical distance measurement tool- Mahalanobis distance, is used to identify deviated data 

clusters and, therefore, the damage in the bridge.  

For univariate or 1D data, the anomaly detection process is compared to that of multivariate data. 

Multiple observations are needed due to the randomness generated from surface roughness. Therefore, 

different ARIMA models will be created for different observations. Thus, the coefficients found from 

the ARIMA model will also be different. Five ARIMA parameters will be generated for each 

observation, and the order of the statistical model is ARIMA (3,0,2). A matrix arrangement of these 

ARIMA parameters for different observations can be considered an ARIMA parameter matrix, which 

is multivariate data. As for the multivariate data, the anomaly detection process can be performed 

using the Mahalanobis distance method.  

Mahalanobis squared distance, which will be referred to as Mahalanobis distance from this point. 
𝐷² =  (𝑥 −  𝜇)ᵀ ·  𝛴⁻¹ ·  (𝑥 −  𝜇)  

Where: 

• x is the p-dimensional data point vector. 

• μ is the p-dimensional mean vector of the distribution. 

• Σ is the p x p covariance matrix of the distribution. 

• Σ-1 is the inverse of the covariance matrix. 

The Mahalonobis Distance (MD) will be first applied between two undamaged or healthy ARIMA 

parameter matrices. Theoretically, the distance would come out to zero, but due to some calculation 

error, the distance is not exactly zero but close to zero. Then, this MD will be applied to measure the 

distance between a damaged and healthy case. To apply the MD, the number of observations must be 

greater than the number of parameters. We have five parameters as we use an ARIMA (3,0,2). So, the 

minimum number of observations needed is six. So, the order of the ARIMA parameter matrix will be 

six by five. A sample of this ARIMA parameter is given below:  

𝐴𝑟𝑖𝑚𝑎 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑀𝑎𝑡𝑟𝑖𝑥 =  

 

 

𝜑11  𝜑12    𝜑13   𝜃14   𝜃15

𝜑21  𝜑22    𝜑23   𝜃24   𝜃25

𝜑31  𝜑32    𝜑33   𝜃34   𝜃35

𝜑41  𝜑42    𝜑43   𝜃44   𝜃45

𝜑51  𝜑52    𝜑53   𝜃54   𝜃55

𝜑61  𝜑62    𝜑63   𝜃64   𝜃65

 

 

 

 

 

2.4 Vehicle Model 

A half-car model was considered the design vehicle in this study, as in Fig 1. The underlying reason is 

to simplify the study, as this vehicle model has only four degrees of freedom. The vehicle's body has 

two degrees of freedom: vertical vehicle body displacement, ys and pitching rotation, ϴs. As for the 

front and rear wheels, the vertical displacements are yt1 and yt2, respectively. Then, using 

D’Alembert’s principle, a set of kinetic equilibrium functions is formulated for each degree of 

freedom. (Law et al., 2006) (Cavadas et al., 2013; Lu & Liu, 2011).  

The equation of motion (EOM) is shown below: 
𝑚𝑠𝑦𝑠 + 𝑐𝑠1 𝑦𝑠 − 𝑦𝑡1 + 𝜃 𝑎1 + 𝑐𝑠2 𝑦𝑠 − 𝑦 𝑡2 − 𝜃 𝑎2 + 𝑘𝑠1 𝑦𝑠 − 𝑦𝑡1 + 𝜃𝑎1 + 𝑘𝑠1 𝑦𝑠 − 𝑦𝑡2 − 𝜃𝑎2 = 0 (1) 

𝐽𝜃 + 𝑘𝑠1𝑎1 𝑦𝑠 − 𝑦𝑡1 + 𝜃𝑎1 − 𝑘𝑠2𝑎2 𝑦𝑠 − 𝑦𝑡2 − 𝜃𝑎2 + 𝑐𝑠1𝑎1 𝑦 𝑠 − 𝑦 𝑡1 + 𝜃 𝑎1 − 𝑐𝑠2𝑎2 𝑦 𝑠 − 𝑦 𝑡2 − 𝜃 𝑎2 = 0 (2) 

𝑚𝑡1𝑦 𝑡1 − 𝑘𝑠1 𝑦𝑠 − 𝑦𝑡1 + 𝜃𝑎1 − 𝑐𝑠1 𝑦 𝑠 − 𝑦 𝑡1 + 𝜃 𝑎1 + 𝑘𝑡1 𝑦𝑡1 − 𝑦𝑐1 = 0 (3) 

𝑚𝑡2𝑦 𝑡2 − 𝑘𝑠2 𝑦𝑠 − 𝑦𝑡1 + 𝜃𝑎2 − 𝑐𝑠2 𝑦 𝑠 − 𝑦 𝑡2 + 𝜃 𝑎2 + 𝑘𝑡2 𝑦𝑡2 − 𝑦𝑐2 = 0  (4) 
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Fig. 1. Half-car vehicle model. 

 

Ms represents the vehicle body and frame mass, basically the vehicle's sprung mass. Then mt1 mt2 

represent the mass of the axle between the front and back wheelset and tires; cs1, cs2, ks1, ks2 are the 

suspension damping and stiffness between the sprung and unsprung mass segment of the vehicle. 

Then kt1 and kt2 are the stiffness of the front and rear wheel tires, respectively. The front and rear 

wheel distance from the vehicle's centre of gravity is denoted using a1 and a2, respectively, which 

gives us the value of a = a1 + a2: distance between the front and rear wheel. The vertical displacement 

on the point of bridge contact with the front and rear wheels is denoted using yc1 and yc2, where the 

vertical displacement between the sprung and unsprung mass of the vehicles is represented using yt1 

and yt2. A new equation (5) is derived using the equations above (1-4). 

 
 𝑀𝑣  𝑦 𝑣 𝑡  +  𝐶𝑣  𝑦 𝑣 𝑡  +  𝐾𝑣  𝑦𝑣 𝑡  =  𝐹𝑣  (5) 

  

 

 
 

Where [Mv], [Cv], [Kv] are the mass, damping, and stiffness matrices of the vehicle, respectively, 

{yv(t)} is the DOF vector, and {Fv} represents the exciting force for the vehicle vibration. Here, 

 

 

 𝑀𝑣 =  

𝑚𝑠 0 0 0
0 𝐽 0 0
0 0 𝑚𝑡1 0
0 0 0 𝑚𝑡2

   

  (6) 

 𝑦𝑣 =  

𝑦𝑠

𝜃
𝑦𝑡1
𝑦𝑡2

   

  (7) 

 𝐾𝑣 =

 
 
 
 

𝑘𝑠1 + 𝑘𝑠2 𝑘𝑠1𝑎1 − 𝑘𝑠2𝑎2 −𝑘𝑠1 −𝑘𝑠2

𝑘𝑠1𝑎1 − 𝑘𝑠2𝑎2 𝑘𝑠1𝑎1
2 + 𝑘𝑠2𝑎2

2 −𝑘𝑠1𝑎1 𝑘𝑠2𝑎2

−𝑘𝑠1 −𝑘𝑠1𝑎1 𝑘𝑠1 + 𝑘𝑡1 0
−𝑘𝑠2 𝑘𝑠2𝑎2 0 𝑘𝑠2 + 𝑘𝑡2 

 
 
 
  

  (8) 

 𝐶𝑣 =  

𝑐𝑠1 + 𝑐𝑠2 𝑐𝑠1𝑎1 − 𝑐𝑠2𝑎2 −𝑐𝑠1 −𝑐𝑠2

𝑐𝑠1𝑎1 − 𝑐𝑠2𝑎2 𝑐𝑠1𝑎1
2 + 𝑐𝑠2𝑎2

2 −𝑐𝑠1𝑎1 𝑐𝑠2𝑎2

−𝑐𝑠1 −𝑐𝑠1𝑎1 𝑐𝑠1 0
−𝑐𝑠2 𝑐𝑠2𝑎2 0 𝑐𝑠2

   

  (9) 
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2.5 Model of Bridge 

This study uses a finite element model of a bridge for the simulation. The properties of the finite 

element model are taken from a real-life bridge, the pre-stressed concrete (PC) Bridge named Teesta 

Bridge, situated in the northern part of Bangladesh. The bridge is a supported PC I-girder and consists 

of five girders with a 200 mm thick deck slab. Each span of the bridge is 50 m. A single lane of the 

bridge subjected to one vehicle is considered for the finite element modelling. The span of the bridge 

is 50 m. The flexural rigidity (EI) and mass of the bridge girder are 6.96 × 1010 Nm2 and 6818.5 kg/m, 

respectively. 5% modal damping is assumed for the bridge for all the modes. The mass per unit length 

of span is defined by m. The EOM for the bridge is formulated as in Eq. (10). 

 𝑀𝑏  𝑦 𝑏 𝑡  +  𝐶𝑏  𝑦 𝑏 𝑡  +  𝐾𝑏   𝑦𝑏 𝑡  =  𝐹𝑏 𝑥, 𝑡  𝛿 𝑥 − 𝑣𝑡   (10) 

 

 
Where [Mb], [Cb], [Kb] are the mass, damping, and stiffness matrices of the bridge, Fb(x,t) denotes the 

coupled forces on the bridge, and the vertical bridge displacement at nodal points at time t is 

represented by {yb(t)}, and δ defines the Dirac function.  

  
Fig. 2. FE model of the bridge. 

Some low-order modes of vibration mainly control the dynamic response of a structure. A few lowest 

modes are usually enough to find a satisfactory result in implementing the superposition method. As a 

result, the computational efficiency will be achieved. The finite element modeled bridge is then 

segmented into ‘N’ elements; therefore, the degrees of freedom (DOF) are taken as ‘N.’ The number 

of modes used in this simulation affects the findings to a great extent. Therefore, the number of the 

modes taken into consideration is 2. As shown in Eq, the bridge displacement can be determined 

using the mode superposition method. 

𝑦𝑏 𝑥, 𝑡 =  𝑦 𝑏 𝑡  =   𝜑𝑖 

𝑁

𝑖=1

𝜂𝑖 𝑡 =  𝜑  𝜂 𝑡   

 

{φi} and ηi(t) are the vibration mode shape of the bridge and modal coordinates, respectively. The 

EOM of the bridge in modal coordinate is obtained by substituting Eq. (11) into Eq. (10) as shown in 

Eq. (12). Multiplying both sides of Eq. (12) by {φn}T, Eq. (13) has been obtained and after 

implementing modal orthogonality principal (Chopra, A.K., 2007) 

{𝜑𝑛}𝑇[𝑀]{𝜑𝑖} = 0,  {𝜑𝑛}𝑇[𝑀]{𝜑𝑛} =  𝑀𝑛  ;  {𝜑𝑛}𝑇[𝐾]{𝜑𝑖} = 0, {𝜑𝑛}𝑇[𝐾]{𝜑𝑛} =  𝐾𝑛   

The N uncoupled second-order differential equations in modal coordinates have been obtained as in 

EQ. (14). 

 𝑀𝑏  𝜑  𝜂  𝑡  +  𝐶𝑏  𝜑  𝜂  𝑡  +  𝐾𝑏  𝜑  𝜂 𝑡  = − 𝐹𝑏 𝑥, 𝑡  𝛿 𝑥 − 𝑣𝑡   (13) 

{𝜑𝑛}𝑇 𝑀𝑏  𝜑  𝜂  𝑡  + {𝜑𝑛}𝑇 𝐶𝑏  𝜑  𝜂  𝑡  + {𝜑𝑛}𝑇 𝐾𝑏   𝜑  𝜂 𝑡  = −{𝜑𝑛}𝑇 𝐹𝑏 𝑥, 𝑡  𝛿 𝑥 − 𝑣𝑡   

𝜂 𝑛 𝑡 + 2𝜁𝑛𝜔𝑛𝜂 𝑛 𝑡 + 𝜔𝑛
2𝜂𝑛 𝑡 = −

1

𝑀𝑛
{𝜑𝑛}𝑇{𝐹𝑏 𝑥, 𝑡 }𝛿(𝑥 − 𝑣𝑡)  

 

Where ωn, Mn, ζn are the natural frequency of vibration mode, modal mass, and modal damping ratio 

of nth mode, respectively; if x=vt, δ(x-vt)=1 else 0. The Eigen-value problem governing this N DOF 

linear dynamic system can be expressed as in Eq. (16). This Eigen-value problem of the bridge 

is solved using Eigen-solution for determining the natural frequencies and vibration mode shapes of 

the bridge. 

  𝐾𝑏  − 𝜔𝑟
2 𝑀𝑏   𝜙𝑟 =   0   
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2.6 Vehicle Bridge Interaction 

Two separate sets of differential equations have now been developed. One is for the vehicle, as in Eq. 

(5), and the other is for the bridge, as in Eq. (14). The matrices resulting from two sets of differential 

equations are coupled to establish interaction between vehicle and bridge system responses. The 

compatibility conditions are applied at the contact points to develop interaction between the vehicle 

and the bridge sub-systems, and the coupled equation of motions is formulated. The effect of 

pavement roughness is included here since both the pavement roughness and the bridge displacement 

cause wheel displacement. Yb1(x1,t) and Yb2(x2,t)  are the bridge displacement responses at the front 

and rear wheel contact points. As per the compatibility condition, the front and rear wheel vertical 

displacements, yc1 and yc2, respectively, are calculated as in Eqs. (16) and (17). Also, the contact 

forces on the bridge consist of the weight of the vehicle and wheel body and the elastic forces as 

calculated in Eqs. (18) and (19). These forces result in the coupling between the bridge and vehicle 

vibration. The coupled form of the vehicle bridge model is depicted in Fig. 3.  

 

 
Fig. 3. The model of coupled vehicle-bridge vibration. 

𝑦𝑐1 = 𝑦𝑏 𝑥1 , 𝑡 + 𝑟 𝑥1 =   𝜑𝑛 𝑥1 𝜂𝑛 𝑡 + 𝑟1

𝑁

𝑛=1

=   𝜑1𝑛𝜂𝑛 𝑡 + 𝑟1

𝑁

𝑛=1

 (16)  

𝑦𝑐2 = 𝑦𝑏 𝑥2 , 𝑡 + 𝑟 𝑥2 =   𝜑𝑛 𝑥2 𝜂𝑛 𝑡 + 𝑟2

𝑁

𝑛=1

=  𝜑2𝑛𝜂𝑛 𝑡 + 𝑟2

𝑁

𝑛=1

         (𝑥2 = 𝑥1 − 𝑎) (17) 

𝐹1 𝑥1 , 𝑡 = 𝑊1 − 𝐾𝑡1 𝑦𝑡1 − 𝑦𝑐1       (18) 

𝐹2 𝑥2 , 𝑡 = 𝑊2 − 𝐾𝑡2 𝑦𝑡2 − 𝑦𝑐2       (19) 

 

Where r1 and r2 are the deck surface roughness and φ1 and φ2 are the mode shape values of nth mode 

at the front and rear wheel contact points, respectively. F1(x1,t) and F2(x2,t) are the point forces at the 

wheel contact points; W is the static load comprising sprung and un-sprung weights. Here, the 

coupling has been done within matrix format by applying the compatibility conditions to equations (3-

4) and (12). We are applying the above conditions to Eqs. (3-4), Eqs. (20-21) are derived. Replacing 

Fi(x,t) from Eqs. (18-19) into Eq. (14), and after rearranging, Eq. (24) is derived. Finally, Eqs. (1-2) 

and (20-22) are converted to a matrix representation as in Eq. (23), which is the coupled matrix 

formulation for both the vehicle and the bridge subsystems interacting together. 

𝑚𝑡1𝑦 𝑡1 − 𝑘𝑠1 𝑦𝑠 − 𝑦𝑡1 + 𝜃𝑎1 − 𝑐𝑠1 𝑦 𝑠 − 𝑦 𝑡1 + 𝜃 𝑎1 + 𝑘𝑡1  𝑦𝑡1 −   𝜑1𝑛𝜂𝑛 (𝑡) + 𝑟1

𝑁

𝑛=1

 𝛿1 = 0 (20) 

𝑚𝑡2𝑦 𝑡2 − 𝑘𝑠2 𝑦𝑠 − 𝑦𝑡1 + 𝜃𝑎2 − 𝑐𝑠2 𝑦 𝑠 − 𝑦 𝑡2 + 𝜃 𝑎2 + 𝑘𝑡2  𝑦𝑡2 −   𝜑2𝑛𝜂𝑛 𝑡 + 𝑟2

𝑁

𝑛=1

 𝛿2  =   0 (21) 

𝑎2𝜑1𝑛𝛿1+𝑎1𝜑2𝑛𝛿2

𝑎
𝑚𝑠𝑦 𝑠 +

𝜑1𝑛𝛿1−𝜑2𝑛𝛿2

𝑎
𝐽𝜃 + 𝜑1𝑛𝛿1𝑚𝑡1𝑦 𝑡1 + 𝜑2𝑛𝛿2𝑚𝑡2𝑦 𝑡2 + 𝜂 𝑛 + 2𝜁𝑛𝜔𝑛𝜂 𝑛 + 𝜔𝑛

2𝜂𝑛 =

−( 𝜑1𝑛𝑊1𝛿1 + 𝜑2𝑛𝑊2𝛿2 )  

 

(22) 

 𝑀 𝑡   𝑌  +  𝐶 𝑡   𝑌  +  𝐾 𝑡   𝑌 =  𝑄 𝑡                    (23) 
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Here, [M(t)], [C(t)], and [K(t)] represent (n+4) orders coupled with time-dependent mass, damping, 

and stiffness matrices of the vehicle and the bridge together, which are formulated in Eqs. (24-26); 

{Y} represents (n+4) order displacement vector consisting of the modal response of the bridge 

combined with the vehicle response. {Q(t)} represents (n+4) order force vector as shown in Eq. (27). 

By solving Eq. (23), vehicle responses can be obtained directly from the solution, and bridge 

responses are calculated using Eq. (11).  

 

 𝑀 𝑡  =

 
 
 
 
 
 
 
 
 
 
 

𝑚𝑠 0 0 0 0 0 … 0
0 𝐽 0 0 0 0 ⋯ 0
0 0 𝑚𝑡1 0 0 0 ⋯ 0
0 0 0 𝑚𝑡2 0 0 ⋯ 0

𝑎2𝜑11𝛿1 + 𝑎1𝜑21𝛿2

𝑎
𝑚𝑠

𝜑11𝛿1 − 𝜑21𝛿2

𝑎
𝐽 𝜑11𝛿1𝑚𝑡1 𝜑21𝛿2𝑚𝑡2 1 0 ⋯ 0

𝑎2𝜑12𝛿1 + 𝑎1𝜑22𝛿2

𝑎
𝑚𝑠

𝜑12𝛿1 − 𝜑22𝛿2

𝑎
𝐽 𝜑12𝛿1𝑚𝑡1 𝜑22𝛿2𝑚𝑡2 0 1 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮
𝑎2𝜑1𝑛𝛿1 + 𝑎1𝜑2𝑛𝛿2

𝑎
𝑚𝑠

𝜑1𝑛𝛿1 − 𝜑2𝑛𝛿2

𝑎
𝐽 𝜑1𝑛𝛿1𝑚𝑡1 𝜑2𝑛𝛿2𝑚𝑡2 0 0 0 1 

 
 
 
 
 
 
 
 
 
 

 (24) 

 𝐾 𝑡  

=

 
 
 
 
 
 
 
 
 

𝑘𝑠1 + 𝑘𝑠2 𝑘𝑠1𝑎1 − 𝑘𝑠2𝑎2 −𝑘𝑠1 −𝑘𝑠2 0 0 ⋯ 0

𝑘𝑠1𝑎1 − 𝑘𝑠2𝑎2 𝑘𝑠1𝑎1
2 + 𝑘𝑠2𝑎2

2 −𝑘𝑠1𝑎1 𝑘𝑠2𝑎2 0 0 ⋯ 0
−𝑘𝑠1 −𝑘𝑠1𝑎1 𝑘𝑠1 + 𝑘𝑡1 0 −𝑘𝑡1𝜑11𝛿1 −𝑘𝑡1𝜑12𝛿1 ⋯ −𝑘𝑡1𝜑1𝑛𝛿1

−𝑘𝑠2 𝑘𝑠2𝑎2 0 𝑘𝑠2 + 𝑘𝑡2 −𝑘𝑡2𝜑21𝛿2 −𝑘𝑡2𝜑21𝛿2 ⋯ −𝑘𝑡2𝜑2𝑛𝛿2

0 0 0 0 𝜔1
2 0 ⋯ 0

0 0 0 0 0 𝜔2
2 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 0 0 0 ⋯ 𝜔𝑛

2  
 
 
 
 
 
 
 
 

 

                                   

(25) 

 𝐶 𝑡   =

 
 
 
 
 
 
 
 

𝑐𝑠1 + 𝑐𝑠2 𝑐𝑠1𝑎1 − 𝑐𝑠2𝑎2 −𝑐𝑠1 −𝑐𝑠2 0 0 ⋯ 0

𝑐𝑠1𝑎1 − 𝑐𝑠2𝑎2 𝑐𝑠1𝑎1
2 + 𝑐𝑠2𝑎2

2 −𝑐𝑠1𝑎1 𝑐𝑠2𝑎2 0 0 ⋯ 0
−𝑐𝑠1 −𝑐𝑠1𝑎1 𝑐𝑠1 0 0 0 ⋯ 0
−𝑐𝑠2 𝑐𝑠2𝑎2 0 𝑐𝑠2 0 0 ⋯ 0

0 0 0 0 2𝜁1𝜔1 0 ⋯ 0
0 0 0 0 0 2𝜁2𝜔2 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 0 0 0 0 2𝜁𝑛𝜔𝑛  

 
 
 
 
 
 
 

 (26) 

 𝑄 𝑡  =

 
 
 
 

 
 
 

0
0

𝑘𝑡1𝑟1𝛿1

𝑘𝑡2𝑟2𝛿2

−( 𝜑11𝑊1𝛿1 + 𝜑21𝑊2𝛿2 )

−( 𝜑12𝑊1𝛿1 + 𝜑22𝑊2𝛿2 )
⋮

−( 𝜑1𝑛𝑊1𝛿1 + 𝜑2𝑛𝑊2𝛿2 ) 
 
 
 

 
 
 

  

 

 

(27) 
 𝑌 𝑡  =

 
 
 
 
 

 
 
 
 

𝑦𝑠 𝑡 

𝜃
𝑦𝑡1 𝑡 

𝑦𝑡2 𝑡 

𝜂1 𝑡 

𝜂2 𝑡 
⋮

𝜂𝑛 𝑡  
 
 
 
 

 
 
 
 

  (28) 

 

 

3. BRIDGE DECK SURFACE ROUGHNESS MODELLING 

The vehicle's wheels are assumed to remain in contact with the bridge deck. Therefore, at the contact 

points, the displacement of the wheels equals that of the bridge deck with surface roughness. The 

surface roughness also plays a vital role in stimulating vehicle vibrations. The bridge deck surface 

roughness is simulated theoretically herein. The table shows that artificial surface roughness 

representing the Class A-B profile has been generated according to ISO 8608 classification [43,44]. 1 

using the Eq. (29). 
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𝑟 𝑥 =    ∆𝑛. 2𝑘 . 10−3.  
𝑛0

𝑖. ∆𝑛
 . 𝑐𝑜𝑠 2𝜋. 𝑖. ∆𝑛. 𝑥 + 𝜑𝑖 

𝑁

𝑖=0

 (29) 

 

 
Where r(x) is the elevation/roughness of the road profile; L represents the length of the bridge, and B 

is the sampling interval; x represents the abscissa variable from 0 to L; Δn = 1/L;nmax=1/B; n0= 0.1 

cycles/m; k denotes a constant value depending upon ISO road roughness classification which varies 

from 3 to 9, corresponding to the road roughness profiles from class A to class H. Also, φi represents 

a random phase angle within the 0-2π range, which follows a uniform probabilistic distribution. Here, 

Fig. 4 demonstrates a typical Class A-B bridge deck roughness profile generated using Eq. (29). 

(Agostinacchio et al., 2014; Múčka, 2017) 

 
Upper Limit Lower Limit k Quality 

A B 3 Very Good 

B C 4 Good 

C D 5 Average 

D E 6 Poor 

E F 7 Very Poor 

Table 1. Road Roughness Classification 

 

 

 
Fig. 4. Typical bridge deck surface roughness. 

4.  DAMAGE CASES 

This paper considers three types of damage cases utilizing MATLAB codes. Artificial damage is 

created by reducing the bridged element's stiffness. Different types of damage severity are created 

depending on the degree of stiffness reduction. The damage will be identified using the anomaly 

detection technique concerning location and severity. 

                    

Fig. 5. Damage condition one at mid-point(D1) 

 

 
 

Fig. 6. Damage condition two at one-fourth distance from the support (D2) 
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Fig. 6. Damage condition three at a three-fourth distance from the support (D3) 

5. IDENTIFICATION OF THE EXISTENCE OF THE DAMAGE 

To identify the existence of the damage, only one sensor is required. For this purpose, for a specific 

damage severity (40%), an acceleration sensor is placed in our simulation at the middle of the span for 

different damage cases. Then, the ARIMA parameters are extracted for all the cases for that specific 

location’s acceleration time series data. This process is repeated six times as randomness requires 

different observation data. Then, the ARIMA parameter matrixes are generated for healthy and 

different damage cases. The Mahalanobis distances of the ARIMA parameter matrix have been 

measured among the healthy and damaged cases and plotted against the observations. 

 

 

 
Fig. 7. Observation vs. Mahalanobis Distance to identify the existence of the damage 

6. IDENTIFICATION OF THE LOCATION OF THE DAMAGE 

We need more than one sensor installed on the bridge span to find the damaged location. The ARIMA 

parameter matrix will be performed as a damage index for a fixed damage severity (40%) difference 

of Mahalanobis distance between healthy and damaged cases. The first step in identifying damage on 

the bridge span is to identify the location of the damaged element. For this purpose, multiple 

acceleration sensors are placed at different span locations. In this simulation work, eight acceleration 

sensors were used to identify the location of damage that had been done artificially at a specific 

position utilizing the MATLAB code. At one-fourth of the distance from the support, this artificial 

damage has been done, and the damage case is called D2. ARIMA parameter matrixes are generated 

for all these positions for healthy and damaged cases. Then, the sum of the Mahalanobis distances is 

measured among the ARIMA parameter matrix to show the anomalies. 
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Fig. 8. Sensor Position vs Sum of Mahalanobis Distance 

7. EFFECT OF DIFFERENT DAMAGE SEVERITY OF DAMAGE INDEX 

After identifying the damaged location using the Sum of Mahalanobis distance as the damage index, 

the impact of damage severity on the damage index is found; the same procedures are followed here 

except that various damage severity cases are considered here. The following graph indicates that the 

higher the damage severity, the higher the damage index. This indication further proves the 

applicability of this damage identification technique. 

 

 
Fig. 9. Observation vs. Mahalanobis Distance for different damage severity 
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8. CONCLUSIONS 

An existing structure's safety is crucial for the clients' and occupancies' safety. It has been said that 

typical damage identification processes are obsolete and less accurate, and we must search for a smart 

technique. This paper develops the damage detection method based on the vehicle-induced bridge 

dynamic acceleration time series response of the bridge derived from the vehicle-bridge interaction 

(VBI). Vehicle-bridge interaction modeling is a complex process that involves several factors such as 

bridge finite element model, half-car vehicle model, pavement deck roughness, vehicle speed, and 

interaction between the vehicle and the bridge at the contact point. After fitting the acceleration 

response for different observations into a statistical model (ARIMA), the ARIMA parameters were 

extracted and sorted into a matrix called the ARIMA parameter matrix. Later, a statistical distance 

measurement tool (Mahalanobis distance) is used to detect the anomalies among healthy and damaged 

ARIMA parameter matrixes. The suggested technique made it possible to track damage over time by 

determining its location and relative severity. Also, this work proved less susceptible to noise, making 

it even more reliable. The application of this technique to naturally damaged bridges will be the focus 

of this study's future efforts. 

ACKNOWLEDGEMENTS  

I am highly indebted to my undergraduate supervisor, Dr Shohel Rana. Without his help, I could not 

have written this paper.  

REFERENCES 

Akiyama, H., Fukada, S., & Kajikawa, Y. (2007). Numerical study on the vibrational serviceability of 

flexible single-span bridges with different structural systems under traffic load. Structural 

Engineering International, 17(3), 256-263. 

Amezquita-Sanchez, J. P., & Adeli, H. (2016). Signal processing techniques for vibration-based 

health monitoring of intelligent structures. Archives of Computational Methods in Engineering, 

23(1), 1-15. 

Cai, C. S., Shi, X. M., Araujo, M., & Chen, S. R. (2007). Effect of approach span condition on the 

vehicle-induced dynamic response of slab-on-girder road bridges. Engineering Structures, 29(12), 

3210-3226. 

Cantero, D., McGetrick, P., Kim, C. W., & OBrien, E. (2019). Experimental monitoring of bridge 

frequency evolution during the passage of vehicles with different suspension properties. 

Engineering Structures, pp. 187, 209–219. 

Chen, S. R., & Wu, J. (2010). Dynamic performance simulation of long-span bridge under combined 

loads of stochastic traffic and wind. Journal of Bridge Engineering, 15(3),219-230. 

Chen, S. R., Cai, C. S., & Levitan, M. (2007). Understand and improve the dynamic performance of 

transportation system—a case study of Luling Bridge. Engineering structures, 29(6), 1043-1051. 

Chopra, A.K. (2012). Dynamics of structures, 4th ed. Prentice Hall, New Jersey. 

De Roeck, G., Degrande, G., Lombaert, G., & Müller, G. Vehicle-structure interaction effect on the 

fatigue life of steel orthotropic decks. 

Deng, L., & Cai, C. S. (2009). Identification of parameters of vehicles moving on bridges. 

Engineering Structures, 31(10), 2474-2485. 

Deng, L., & Cai, C. S. (2010). Development of dynamic impact factor for performance evaluation of 

existing multi-girder concrete bridges. Engineering Structures, 32(1), 21- 31. 

Deng, L., & Cai, C. S. (2010). Development of dynamic impact factor for performance evaluation of 

existing multi-girder concrete bridges. Engineering Structures, 32(1), 21- 31. 

Deng, L., He, W., & Shao, Y. (2015). Dynamic impact factors for shear and bending moment of 

supported and continuous concrete girder bridges. Journal of Bridge Engineering, 20(11), 

04015005. 



 

7th International Conference on Civil Engineering for Sustainable Development (ICCESD 2024), Bangladesh 

 ICCESD 2024_0053_13 

Farrar, C. R., & Worden, K. (2010). An introduction to structural health monitoring. New Trends in 

Vibration Based Structural Health Monitoring, 1-17. 

Hou, L. Q., Zhao, X. F., Ou, J. P., & Liu, C. C. (2014). A review of nondeterministic methods for 

structural damage diagnosis. J. Vib. Shock, pp. 33, 50–58. 

Huang, D. (2001). Dynamic analysis of steel curved box girder bridges. Journal of Bridge 

Engineering, 6(6), 506–513. 

Huth, O., Feltrin, G., Maeck, J., Kilic, N., & Motavalli, M. (2005). Damage identification using modal 

data: Experiences on a prestressed concrete bridge. Journal of Structural Engineering, 131(12), 

1898-1910. 

J.P. Yang, C.Y. Cao, Wheel size embedded two-mass vehicle model for scanning bridge frequencies, 

Acta Mech. 231 (4) (2020) 1461–1475, doi:10.1007/s00707-019-02595-5. 

Kildashti, K., Alamdari, M. M., Kim, C. W., Gao, W., & Samali, B. (2020). Drive-by- bridge 

inspection for damage identification in a cable-stayed bridge: Numerical investigations. 

Engineering structures, 223, 110891. 

Kocatürk, T., & Şimşek, M. (2006). Vibration of viscoelastic beams subjected to an eccentric 

compressive force and a concentrated moving harmonic force. Journal of Sound and Vibration, 

291(1-2), 302-322. 

Law, S. S., & Li, J. (2010). Updating the reliability of a concrete bridge structure based on condition 

assessment with uncertainties. Engineering Structures, 32(1), 286-296. 

Ma, L., Zhang, W., Han, W. S., & Liu, J. X. (2019). Determining the dynamic amplification factor of 

multi-span continuous box girder bridges in highways using vehicle-bridge interaction analyses. 

Engineering Structures, pp. 181, 47–59. 

Maeck, J. (2003). Damage assessment of civil engineering structures by vibration monitoring. 

Múčka, P. (2017). Simulated road profiles according to ISO 8608 in vibration analysis. Journal of 

Testing and Evaluation, 46(1), 405–418. 

OBrien, E., Carey, C., & Keenahan, J. (2015). Bridge damage detection using ambient traffic and 

moving force identification. Structural Control and Health Monitoring, 22(12), 1396–1407. 

Quirke, P., Bowe, C., OBrien, E. J., Cantero, D., Antolin, P., & Goicolea, J. M. (2017). Railway 

bridge damage detection using vehicle-based inertial measurements and apparent profile. 

Engineering structures, pp. 153, 421-442. 

Sun, Z., Nagayama, T., Nishio, M., & Fujino, Y. (2018). Investigation on a curvature‐based damage 

detection method using displacement under a moving vehicle. Structural Control and Health 

Monitoring, 25(1), e2044. 

Sun, Z., Nagayama, T., Su, D., & Fujino, Y. (2016). A damage detection algorithm utilizing dynamic 

displacement of the bridge under a moving vehicle. Shock and Vibration, 2016. 

Van Khang, N., Dien, N. P., & Van Huong, N. T. (2009). Transverse vibrations of prestressed 

continuous beams on rigid supports under the action of moving bodies. Archive of Applied 

Mechanics, 79(10), 939-953. 

Xu, Y. L., Zhang, J., Li, J. C., & Xia, Y. (2009). Experimental investigation on statistical moment-

based structural damage detection method. Structural Health Monitoring, 8(6), 555-571 

Xu, Y. L., Zhang, J., Li, J., & Wang, X. M. (2011). Stochastic damage detection method for building 

structures with parametric uncertainties. Journal of sound and vibration, 330(20), 4725–4737. 

Yang, J. P., & Lee, W. C. (2018). The damping effect of a passing vehicle for indirectly measuring 

bridge frequencies by EMD technique. International Journal of Structural Stability and Dynamics, 

18(01), 1850008. 

Yang, Y. B., Li, Y. C., & Chang, K. C. (2014). Constructing the mode shapes of a bridge from a 

passing vehicle: a theoretical study. Innovative Structures and Systems, 13(5), 797- 819. 

Yang, Y. B., Lin, C. W., & Yau, J. D. (2004). Extracting bridge frequencies from the dynamic 

response of a passing vehicle. Journal of Sound and Vibration, 272(3-5), 471- 493. 

Yang, Y. B., Zhang, B., Qian, Y., & Wu, Y. (2018). Contact-point response for modal identification 

of bridges by a moving test vehicle. International Journal of Structural Stability and Dynamics, 

18(05), 1850073. 

Yang, Y., Liu, H., Mosalam, K. M., & Huang, S. (2013). An improved direct stiffness calculation 

method for damage detection of beam structures. Structural Control and Health Monitoring, 20(5), 

835-851. 



 

7th International Conference on Civil Engineering for Sustainable Development (ICCESD 2024), Bangladesh 

 ICCESD 2024_0053_14 

Yang, Y., Mosalam, K. M., Liu, G., & Wang, X. (2016). Damage Detection Using Improved Direct 

Stiffness Calculations—A Case Study. International Journal of Structural Stability and Dynamics, 

16(01), 1640002. 

Yang, Y., Yang, Y. B., & Chen, Z. X. (2017). Seismic damage assessment of RC structures under 

shaking table tests using the modified direct stiffness calculation method. Engineering Structures, 

131, 574-586. 

Yang, Y., Zhu, Y., Wang, L. L., Jia, B. Y., & Jin, R. (2018). Structural damage identification of 

bridges from passing test vehicles. Sensors, 18(11), 4035. 

Zhu, X. Q., & Law, S. S. (2002). Dynamic load on continuous multi-lane bridge deck from moving 

vehicles. Journal of Sound and Vibration, 251(4), 697–716. 

Rana, S., Adhikary, S., & Tasnim, J. (2022). A statistical index-based damage identification method 

of a bridge using dynamic displacement under a moving vehicle. Structures, 43, 79–92. 

AASHTO, L. (2012). AASHTO LRFD bridge design specifications. American Association of State  

Highway and Transportation Officials, Washington, DC. 


