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ABSTRACT 

Accurately predicting concrete compressive strength is crucial for optimizing construction workflows 

and ensuring structural integrity. However, traditional methods are often costly and fail to capture the 

complex interplay of concrete's components. This study investigates the potential of Artificial 

Intelligence (AI) to overcome these limitations, paving the way for a more efficient and data-driven 

approach to concrete mix design. We compared five AI algorithms - Artificial Neural Networks 

(ANN), Support Vector Machines (SVM), Decision Trees (DT), Random Forests (RF), and Linear 

Regression (LR) - on a dataset of 1030 concrete samples from the University of California, Irvine. 

Following established protocols, we divided the data into training and testing sets, and then trained 

each AI model on the former. The models were then evaluated on the unseen testing data using four 

key accuracy metrics: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE), and Coefficient of Determination (R²). The results were striking: 

Random Forests emerged as the clear victor, achieving an R² of 0.89, significantly higher than any 

other method and nearing the ideal value of 1. This indicates a remarkably strong fit between the RF 

model and the data, suggesting its ability to accurately predict concrete compressive strength across a 

diverse range of mixtures. Furthermore, RF displayed superior performance on all error metrics. 

Compared to its rivals, it boasts significantly lower RMSE (5.19 MPa), MAPE (12.68%), and MAE 

(3.57 MPa), further solidifying its claim to the title of the most accurate predictor. Visualizations 

confirmed these findings, with RF's predictions closely mirroring the actual compressive strength 

values, while other models exhibited notable deviations. These findings hold immense potential for 

the construction industry. This opens doors to faster and more accurate concrete mix design, leading 

to optimized material usage, reduced construction costs, and enhanced structural safety. 

This study lays the groundwork for further research in utilizing AI for construction materials 

optimization. Future avenues include exploring larger datasets, incorporating additional concrete mix 

parameters, and investigating the potential of hybrid AI models for even greater accuracy. Ultimately, 

embracing AI in concrete strength prediction promises a transformative shift in the construction 

industry, promoting sustainability, efficiency, and enhanced structural performance. 

 

Keywords: Artificial Intelligence, Prediction, Concrete Compressive Strength, Random Forest, 

Artificial Neural Networks. 
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1. INTRODUCTION 

In recent years, concrete has emerged as the predominant construction material due to its 

demonstrated stability and high strength. Beyond the conventional ingredients of cement, coarse 

aggregate, fine aggregate, and water, various additional cement composition materials, such as fly 

ash, blast furnace slag, and chemical additives like superplasticizers, have gained prominence 

(Muliauwan et al.,2020). The incorporation of these materials not only enhances the performance of 

concrete but also yields economic benefits by mitigating the cost associated with Portland cement, the 

most expensive component of concrete mixtures. 

The use of additives in concrete has become popular for improving workability, durability, and 

strength, introducing new complexities in modelling concrete compressive strength. Traditional 

modelling methods, commonly employed for predicting concrete behaviour, often struggle to provide 

accurate results in the presence of these additional materials. Typically, strength tests are conducted 

7–28 days after the concrete casting process, leading to potential delays in subsequent construction 

phases (Ramezanianpour et al., 2013). Immediate adjustment of the mixture proportions in response 

to strength variations can lead to time and cost savings. 

The nonlinear relationship between concrete components and its strength complicates mathematical 

modelling. The empirical equation found in current standard codes for estimating compressive 

strength is based on testing concrete without additional cement composition materials (Muliauwan et 

al.,2020). Understanding the intricate relationship between concrete composition and strength is 

crucial for optimizing concrete mixtures. While extensive research has traditionally relied on time-

consuming and costly experimental tests, there is a pressing need for a modelling system independent 

of experimentation that can accurately predict concrete compressive strength. 

Artificial intelligence (AI) methods have gained prominence for solving classification and regression 

problems due to their superior accuracy compared to conventional methods. This research focuses on 

developing AI techniques to predict concrete compressive strength using various components 

Experimental data from a machine learning repository at the University of California, Irvine (UCI), 

collected by Yeh (Yeh, 1998), were employed to predict the compressive strength of High-

Performance Concrete (HPC). The AI modelling was implemented in Python, utilizing five predictive 

techniques: artificial neural networks (ANN), support vector machines (SVM), decision tree (DT), 

random forest (RF), and linear regression (LR). Each model was applied to predict concrete 

compressive strength, and their performances were systematically assessed. 

2. ARTIFICIAL INTELLIGENCE METHODS  

  2.1 ARTIFICIAL NEURAL NETWORK (ANN)  

The Artificial Neural Network (ANN) is a computational model designed to emulate the structural 

and functional characteristics of biological neural networks (Agatonovic-Kustrin et al.,2000). 

Applications of ANN can be broadly categorized as either classification models or regression models. 

In the context of predicting the compressive strength of concrete, extensive research has been 

dedicated to the use of ANN (Yeh, 1998) Researchers have explored leveraging ANN to develop 

concrete compressive strength models that surpass the accuracy of traditional regression models. 

Among the various ANN models, the multilayer perceptron (MLP) stands out as the most widely 

utilized. The MLP model comprises an input layer with sensory input nodes, one or more hidden 

layers responsible for computation, and an output layer housing a single computational node 

representing the concrete compressive strength. A key learning algorithm employed for training the 

MLP model is the back-propagation (BP) algorithm, recognized for its effectiveness. The activation 

process of each neuron can be elucidated through Equations (1) and (2) (Muliauwan et al.,2020). 
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𝑛𝑒𝑡𝑘=Σ𝑤𝑘𝑗𝑜𝑗                                                                                                                                                        (1) 

𝑦𝑘 = 𝑓 (𝑛𝑒𝑡𝑘)                                                                                                                                                       (2) 

 

The activation of neurons denoted as 𝑛𝑒𝑡𝑘 for neuron k in the current layer is influenced by the set of 

neurons (j) in the preceding layer. The weight of the connection between neurons k and j is 

represented by 𝑤𝑘𝑗, while 𝑜𝑗 signifies the output of neuron j. The output 𝑦𝑘 is typically calculated 

using sigmoid and logistical transfer functions. A visual representation of the ANN structure is 

depicted in Figure 1. 

 

 
 

Figure 1. Illustration of ANN structure 

 

2.2 Support Vector Machine (SVM)  

 

Support Vector Machines (SVM), initially introduced by Vapnik in 1995 (Vapnik, 1995) have found 

widespread application in numerous civil engineering contexts. Particularly noteworthy is their recent 

prevalence in predicting concrete compressive strength. This study adopts support vector regression 

(ε-SVR), a specialized form of SVM, to construct an input-output model for concrete. 

 

SVM operates on the basis of an objective function that facilitates the estimation process of the 

underlying function, as elucidated in Figure 2. Notably, when confronted with nonlinear spaces, SVM 

employs the radial-based function (RBF) kernel as a preferred choice. This kernel is selected due to its 

demonstrated ability to yield superior results compared to alternative kernels. The decision to utilize 

ε-SVR in this study underscores the significance of SVM techniques in accurately modeling and 

predicting concrete compressive strength. 
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Figure 2. Illustration of hyperplane separation and determination of support vector by SVM. 

 
The following model underlies the functional relationship between one or more independent variables 

with the response variable (Muliauwan et al.,2020): 
 

𝑦(x) = wT ϕ(x)+b                                                                                                                                   (3) 

 
where x Є R, y Є R, and ϕ(x): Rn is the process of mapping to higher dimensional feature space. 

In SVM for regression analysis, a data set of {Xk, Yk} , objective functions can be formulated 

as follows (Muliauwan et al.,2020):  
 

Min. Jp (w,e) = wT wϕ + c                                                                                                        

(4)  
 

s.t 𝑦k = wT ϕ(x)+b+ek,   k = 1,…,N                                                                                                       (5)  
 

where ek Є R is the error variable; c indicates the regularization constant. 

 

2.3 Decision Tree (DT) 

Decision trees (DTs) represent a non-parametric, rule-based methodology employed for tackling 

classification and regression tasks. This approach involves dividing the feature space into a sequence 

of elementary regions, constructing a predictive model by extracting clear decision rules from the 

provided training data. The appeal of decision trees in machine learning stems from their transparency 

and simplicity, making them a popular choice. 
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In the context of this research, decision trees serve as a benchmark for evaluating model performance 

relative to other ensemble models. The utilization of decision trees is pivotal in providing a basis for 

comparison, allowing for a comprehensive assessment of how different models perform in predicting 

concrete compressive strength. Figure 3 (Muliauwan et al.,2020) provides a visual representation of 

a decision tree, offering insight into the structured and hierarchical nature of the decision-making 

process. 

 

Figure 3. Illustration of Decision Tree. 

2.4 Random Forest (RF) 

Random Forest Regression is an effective approach for tackling regression tasks in supervised 

learning. This method leverages multiple decision trees, combining their outputs to derive the ultimate 

prediction. The result is obtained by averaging the outputs of each individual decision tree within the 

ensemble (Sevim, 2021). Figure: 4 (Muliauwan et al.,2020), illustrates a representative example of a 

random forest regression. 

The constituent decision trees, referred to as base models, actively contribute to the overall prediction 

process. Each decision tree in the ensemble operates independently, and their collective output is 

harnessed to produce a more robust and accurate regression outcome.The formulae is as follows 

(Torre-Tojal et al.,2022). 

g(x) = f0(x)+f1(x)+f2(x)+ --------------------                                                                              (6) 

 

Figure 4. Illustration of Random Forest. 
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2.5 Linear Regression (LR)  

Linear Regression (LR), an extension of the basic regression model, is employed to ascertain the 

relationship between a numerical response variable and two or more explanatory variables (Coppi  et 

al.,2006) Widely used in modeling the mechanical properties of construction materials, LR was a 

focus of investigation in this study. The computational challenge addressed by LR involves fitting a 

hyperplane to an n-dimensional space, where n denotes the number of independent variables. 

For a system featuring n inputs (independent variables denoted as X) and one output (dependent 

variable denoted as Y), the core challenge tackled by LR is the determination of unknown parameters 

within the linear regression model. This process is exemplified in Figure 3, where the goal is to find 

the optimal fit for the hyperplane that accurately represents the relationship between the input 

variables and the output variable. 

 

 

Figure 5. Illustration of linear regression. 

 

The general formula for LR models is shown in Equation 6 (Muliauwan et al.,2020).  

 

Y = β0 + β1 X1+ β2 X2 + . . . + βn Xn + ε                                                                                  (6)  

 
In the proposed model, βi is a regression coefficient (i= 1,2,3,…,n), X’s values represent concrete 

attributes, ε is an error term, and Y is concrete compressive strength. Regression analysis estimates 

the unbiased values of the regression coefficients βi against the training data set. 

3. METHODOLOGY 

The dataset employed in this study was procured from a machine learning repository housed at the 

University of California, Irvine (UCI), meticulously curated by Yeh (Yeh, 1998). This dataset 

comprises a comprehensive collection of experimental data derived from the evaluation of 1030 

concrete samples. These samples underwent rigorous testing across various university research 

laboratories, collectively forming the basis for assessing the predictive capabilities of each artificial 

intelligence (AI) method employed in this research. These five methods (ANN, LR, SVM, Decision 

Tree, Random Forest) were chosen for their widespread use and effectiveness in regression tasks. 

Benefits include ANN's ability to capture non-linear relationships, LR's simplicity, SVM's 

effectiveness in high-dimensional spaces, Decision Tree's interpretability, and Random Forest's 

ensemble robustness. However, challenges include the computational demands of ANN, LR's linearity 

assumption, SVM's sensitivity to parameters, Decision Tree's proneness to overfitting, and Random 

Forest's potential interpretability issues and computational expense. 
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All experimental tests adhered to standardized procedures and were conducted on a cylindrical 

concrete specimen with a diameter of 15 cm. This careful standardization ensured consistency and 

reliability in the testing process. The dataset, outlined in Table 1, encompasses nine specific variables 

related to High-Performance Concrete (HPC). These variables, serving as critical components of the 

analytical framework, provided essential insights for evaluating the effectiveness of AI methods in 

predicting concrete compressive strength. 

Table 1. Variables that affect the compressive strength of concrete and its descriptive  

 

Table 2 outlines the performance measurement model utilized to gauge the accuracy of each 

predictive method employed in this study. This accuracy model is derived by assessing the alignment 

between actual data and the predicted outcomes of the output variable. The evaluation incorporates 

four distinct performance measurement metrics: root mean square error (RMSE), mean absolute error 

(MAE), mean absolute percentage error (MAPE), and coefficient of determination (R2) (Chou, 2014). 

The root mean square error (RMSE) provides a measure of the average deviation between each actual 

data point and its corresponding predicted result. Mean absolute error (MAE) calculates the average 

error by considering the absolute differences between the actual data and the predicted outcomes. R-

squared (R2), a statistical metric, quantifies the proportion of variance in the dependent variable 

explained by the independent variables in a regression model. It ranges from 0 to 1, with higher values 

indicating a more robust fit. 

While MAE and RMSE use absolute differences in accuracy calculations, mean absolute percentage 

error (MAPE) has the advantage of being unaffected by the units and sizes of the predicted and actual 

values. This characteristic makes MAPE more efficient in discerning relative differences between 

models. 

The assessment of model performance in this context prioritizes the highest R2 values, indicating a 

stronger fit, and the lowest RMSE, MAE, and MAPE values signifying superior accuracy and 

predictive capability.  

Table 2. Indicators of prediction model accuracy. 

Performance measurement Mathematical formula 

Coefficient of determination (R2). 
R=1-  = 1−  

Root Mean Squared Error (RMSE) 
RMSE=  

Mean Absolute Percentage Error (MAPE) MAPE=  

Mean Absolute Error (MAE) MAE=  

 

 

Variables Unit Min Mean Max Standard Deviation 

X1: Cement kg/m3 102.0 281.17 540.0 104.51 

X2: Blast-furnace slag kg/m3 11.0 107.28 359.4 61.88 

X3: Fly ash kg/m3 24.5 83.86 200.1 39.99 

X4: Water kg/m3 121.8 181.57 247.0 24.35 

X5: Superplasticizer kg/m3 1.7 8.49 32.2 4.04 

X6: Coarse aggregate kg/m3 801.0 972.92 1,145.0 77.75 

X7: Fine aggregate kg/m3 594.0 773.58 992.6 80.18 

X8: Age of testing Day 1.0 45.66 365.0 63.17 

Y: HPC compressive 

strength 

MPa 2.3 35.82 82.6 16.71 
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The Python SKlearn Library's AI model is leveraged to construct a precise prediction model, although 

the platform is known for its user-friendly interface in AI methods, a detailed flow chart is essential to 

ensure the development of an accurate prediction model. The process involves five key steps, each 

contributing to the robustness and reliability of the model: 

a. Data Input: This initial step involves the collection of data, serving as the foundation for 

subsequent model development. 

b. Training and Testing: The input data undergoes division into two distinct groups—training and 

testing. The training set, constituting 70% of the data, is utilized to create prediction models tailored 

to fit the dataset. Simultaneously, the testing set, comprising 30% of the data, is employed to assess 

the performance of the constructed prediction models. 

c. AI Prediction Model Learning: This step involves the training of the AI prediction model 

using the designated training data, enabling it to learn and adapt to the underlying patterns in the 

dataset. 

d. Testing AI Prediction Models: Subsequently, the AI prediction models undergo testing using 

the designated testing data to evaluate their performance and accuracy. 

e. Prediction Results Evaluation: The final step involves assessing the prediction results obtained 

for each model using four accuracy indicators—root mean square error (RMSE), mean absolute error 

(MAE), mean absolute percentage error (MAPE), and coefficient of determination (R2). 

The entire process is visually represented in Figure 6, providing a comprehensive flow diagram 

elucidating the step-by-step procedure for building the AI prediction model using a single model. This 

meticulous approach ensures a thorough understanding of the model development process and 

facilitates the evaluation of its predictive capabilities. 

 

 

Figure 6. Flow diagram of the formation of AI prediction using a single model. 

 

4. Results and Discussions:  

This research undertaking involves a comprehensive examination aimed at assessing the predictive 

performance of various artificial intelligence (AI) models concerning the concrete compressive 

strength of a dataset comprising 1030 concrete samples. Within this dataset, a stratified division is 

implemented, with 723 samples earmarked for training purposes, and the remaining 307 reserved for 

testing. 

The AI models scrutinized in this study, namely Artificial Neural Networks (ANN), Support Vector 

Machines (SVM), Decision Trees (DT), Random Forests (RF), and Linear Regression (LR), are 

configured with default parameters sourced from the sklearn library, ensuring a standardized baseline 

for comparison. 



 

7th International Conference on Civil Engineering for Sustainable Development (ICCESD 2024), Bangladesh 

 ICCESD 2024_0586_9 

As outlined earlier, the assessment of each prediction method encompasses a suite of metrics, 

including R-squared (R2), Root Mean Square Error (RMSE), Mean Absolute Percentage Error 

(MAPE), and Mean Absolute Error (MAE). These metrics collectively offer a nuanced understanding 

of the accuracy and precision exhibited by each AI model in predicting concrete compressive strength. 

In summarizing the outcomes of this thorough analysis, the results are succinctly presented in Table 3, 

shedding light on the performance of each method specifically when applied to the testing dataset. 

This tabulated representation serves as a valuable reference, enabling a detailed exploration of the 

nuanced strengths and limitations inherent in each AI model's ability to predict concrete compressive 

strength. 

Table 3. The results of the performance evaluation model of the prediction on testing data 

Methods Testing Result 

 R2 RMSE 

(MPa) 

MAPE 

(%) 

MAE 

(MPa) 

ANN 0.76 7.67 20.82 5.86 

SVM 0.66 9.13 32.11 7.44 

DT 0.77 7.49 15.76 4.67 

RF 0.89 5.19 12.68 3.57 

LR 0.57 10.28 32.20 8.23 

 

Upon a careful examination of Table 3, it becomes evident that Random Forests (RF) outperforms all 

other existing methods across the board in terms of all four accuracy indicators. RF achieves an R-

squared (R2) value of 0.89, surpassing the values obtained by other methods and coming notably 

close to the maximum value of 1. This high R2 value indicates a robust fit of the RF model to the 

data. 

Additionally, RF demonstrates a lower error rate when compared to all other methods. Specifically, 

RF exhibits values of 5.19 MPa, 12.68%, and 3.57 MPa for Root Mean Square Error (RMSE), Mean 

Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE), respectively. These metrics 

collectively signify the accuracy and precision of the RF model in predicting concrete compressive 

strength. 

In contrast, the alternative methods produce RMSE, MAPE, and MAE values that substantially 

deviate from those achieved by RF, further highlighting the superiority of Random Forests in this 

particular predictive task. To provide a visual representation of the predicted results, Figures 6 and 7 

illustrate the outcomes of Artificial Neural Networks (ANN), Support Vector Machines (SVM), 

Decision Trees (DT), Random Forests (RF), and Linear Regression (LR). These visualizations offer 

additional insights into the performance of each method and underscore the notable success of 

Random Forests in this predictive modelling endeavour. 
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Figure 7. Comparison of prediction and actual results in testing data using (a) ANN method, (b) SVM 

method, (c) DT method, and (d) RF method. 

 

Figure 8. Comparison of prediction and actual results in testing data using LR method. 

(a) (b) 

(c) (d) 
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Upon inspecting the figures presented above, it becomes evident that the accuracy of prediction 

results is closely linked to their proximity to the diagonal line. Moving from Figure 7 to Figure 8, a 

discernible trend emerges: the prediction results generated by Random Forests (RF) exhibit a closer 

alignment with the diagonal line compared to the results obtained from other methods. 

This trend leads to the conclusion that the accuracy of RF predictions surpasses that of the alternative 

methods. The proximity of each data point from RF to the diagonal line signifies a higher level of 

precision and fidelity in capturing the true patterns within the dataset. In essence, the visual 

progression from one figure to the next solidifies the assertion that Random Forests demonstrate 

superior accuracy in predicting concrete compressive strength when compared to other 

methodologies. The consistency in the alignment with the diagonal line serves as a compelling visual 

indicator of the robust predictive capabilities exhibited by the RF model. 

5. CONCLUSION  

This research undertakes a comprehensive comparative analysis, exploring the efficacy of various 

artificial intelligence (AI) models in predicting concrete compressive strength. Leveraging a dataset 

encompassing 1030 concrete samples, these samples serve as the foundational elements for 

constructing a robust database. This database, in turn, is utilized for creating a predictive model and 

rigorously testing its accuracy. 

The performance evaluation of each method involves a nuanced examination using four key accuracy 

indicators: R-squared (R2), Root Mean Square Error (RMSE), Mean Absolute Percentage Error 

(MAPE), and Mean Absolute Error (MAE). The experiments are meticulously executed using the 

Python programming language. 

The noteworthy finding of this study reveals that Random Forests (RF) outshines other models in 

terms of accuracy across all performance measures. Random forest works better as it is an ensemble 

learning method with high accuracy and less risk of overfitting, as well as having more features than 

any other machine learning models. The RF model showcases optimal performance when evaluated 

through the four indicators, establishing its superiority in predicting concrete compressive strength. 

Importantly, the research successfully demonstrates the capability of AI methods to accurately predict 

concrete compressive strength without the necessity for extensive laboratory experiments. This 

highlights the potential of AI techniques to enhance efficiency and accuracy in the realm of concrete 

strength prediction. 
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