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ABSTRACT 

The traditional techniques used for the estimation of the bearing capacity of piles are time consuming 

and costly. Moreover, some of the techniques are empirical, which involve enormous approximations 

and don’t consider all the variables contributing to the strength of the pile. Hence, researchers have 

grown more interested in several machine learning approaches in order to consider more variables to 

model practical field situations with great accuracy and overcome the issues of approximation. In this 

study, cohesion, friction angle, specific weight of soil, pile-soil friction angle, flap number  ̧pile area, 

and pile length have been considered as the contributing factors of pile-bearing capacity. Two of the 

most widely used machine learning models, Support Vector Regression (SVR) and CatBoost 

Regression, have been built with different architectures and hyperparameter sets for predicting the 

bearing capacity of pile. Datasets have been collected from various regions for modelling the 

heterogeneous nature of the soil and avoiding the overfitting issue to make the model more 

generalized. The R2 values have been found as 0.87 and 0.95 for concrete and steel piles respectively 

from SVR and 0.98 and 0.99 for concrete and steel piles respectively from CatBoost Regression. For 

the further improvement of the prediction accuracy some advance machine learning and deep learning 

models with more generalized dataset have been suggested. 
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1. INTRODUCTION 

The realm of civil engineering is a dynamic interplay between innovation and established practices, 

ensuring the reliability and safety of the monumental structures that captivate our admiration. In the 

field of geotechnical engineering, piles are commonly used as a foundation element to support various 

types of structures such as buildings, bridges, and offshore platforms. The prediction of bearing 

capacity for piles is a critical aspect of geotechnical engineering and foundation design, as it directly 

influences the stability and safety of various structures (Niazi et al., 2014). Modern approaches to 

estimating pile bearing capacity involve numerical, experimental, and analytical methods, providing 

diverse tools for geotechnical engineering. This integration enhances prediction accuracy, showcasing 

the progressive nature of contemporary practices in optimizing pile foundation performance. (Shahin, 

2010). In the assessment of pile bearing capacity, the Standard Penetration Test (SPT) has been 

extensively employed (Bouafia & Derbala, 2002). Various hypotheses, rooted in SPT results, have 

been formulated to predict pile bearing capacity, including empirical equations derived from studies 

by Meyerhof (1976), Bazaraa and Kurkur (1986), and Shariatmadari et al. (2008). Additionally, a 

proposed approach involves considering an experimental formula to incorporate the influences of soil 

type. Specifically, this includes using the SPT value for sandy soil and the untrained shear strength of 

soil (Cu) for clayey soil (Architectural Institute of Japan, 2004). Nevertheless, the methods mentioned 

above for estimating pile-bearing capacity have been demonstrated to be both time-consuming and 

expensive. (Abu-Farsakh et al., 2004). Since the early 1990s, the use of machine learning approaches 

to predict pile bearing capacity has increased significantly (Debiche et al., 2018). Machine learning, a 

subset of artificial intelligence (AI) and computer science, revolves around using data and algorithms 

to replicate human learning processes and enhance accuracy over time. This shift is driven by the 

advantages of machine learning, such as its capability to handle extensive datasets and navigate highly 

nonlinear relationships among various parameters. A recent study proposed using Linear regression 

that it yielded accurate predictions with an average relative error of 6.5% (Liu et al., 2018). Again, a 

machine learning model based on CatBoost regression to predict the bearing capacity of pile 

foundations using data from a field test had better performance in predicting the pile capacity 

compared to other machine learning models. While other recent studies have proposed the use of a 

random forest algorithm for predicting single pile bearing capacity in various soil types (Wu et al., 

2020). Additionally, a K-nearest neighbor algorithm demonstrated accurate predictions for pile-

bearing capacity in clayey soils with an average relative error of 9.1% (Jiang et al., 2019). 

Furthermore, a support vector machine algorithm outperformed conventional empirical methods in 

predicting pile-bearing capacity (Singh et al., 2019). 

2. METHODOLOGY 

2.1 Typical Flow Chart 
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Figure 1: Typical flowchart of a machine learning algorithm 
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2.2 Data Collection and Preprocessing 

The dataset has been collected from an open access scientific journal called Multidisciplinary Digital 

Publishing Institute (MDPI). Since the dataset contains two types of piles, the whole dataset has been 

segregated according to the materials of the pile: concrete pile and steel pile. 

 

The dataset has contained 8 variables and 100 observations of steel and concrete piles. The first 7 

variables: average cohesion, average friction angle, average soil specific weight, average pile-soil 

friction angle, flap number, pile area, and pile length have been used as explanatory variables and pile 

capacity has been used as a response variable. The statistical properties of the dataset have been 

shown in Table 2.1 and in Table 2.2 for concrete and steel piles respectively. 

 

Table 1: Statistical properties for concrete pile 

 

Variables Mean 
Standard 

Deviation Correlation with Pile Capacity 

Average Cohesion (kN/m2) 39.75 47.09 -0.22 

Average Friction Angle (°) 22.15 10.50 0.34 

Average Soil Specific weight (kN/m3) 9.65 1.72 0.1 

Average Pile-Soil Friction Angle (°) 14.09 1.25 0.18 

Flap Number 229.74 370.75 0.34 

Pile Area (m2) 0.17 0.11 0.19 

Pile Length (m) 22.96 4.87 0.23 

Pile Capacity (kN) 2388.36 677.19 1.00 

 

Table 2: Statistical properties for steel pile 

 

Variables Mean 
Standard 

Deviation Correlation with Pile Capacity 

Average Cohesion (kN/m2) 29.94 17.34 0.13 

Average Friction Angle (°) 28.32 8.56 0.35 

Average Soil Specific weight (kN/m3) 10.71 2.05 0.21 

Average Pile-Soil Friction Angle (°) 13.47 2.12 -0.07 

Flap Number 542.53 542.89 0.45 

Pile Area (m2) 0.54 0.50 0.50 
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Pile Length (m) 24.08 12.71 0.07 

Pile Capacity (kN) 3171.25 1538.43 1.00 

 

In the data preprocessing phase, the dataset has been checked to see if it has been fit to be used in 

machine learning algorithms or if some corrections have been required. Missing values and irrelevant 

observations have also been checked. Although there were no missing values, some outliers were 

present in the dataset. These outliers have been removed so that the algorithms would not consider 

any unusual cases in the models. 

2.3 Building up of the model 

After preprocessing, each dataset has been split into two parts: the train dataset and the test dataset. 80 

percent of the observations have been used as train set for training the models while the remaining 20 

percent have been used as a test set for evaluating the prediction accuracy of the models as shown in 

the flowchart in Figure 1.  

 

As this study has been based on continuous variable, two  regression models, such as Support Vector 

Regression and CatBoost Regression have been used to train the models using the train dataset. After 

training the model, the accuracy of the models has been evaluated using the test dataset. For 

evaluating the models, various error metrices such as R2, Mean Absolute Error, Mean Absolute 

Percentage Error and Root Mean Square Error have been used. 

 

2.4 Machine Learning Algorithms 

2.4.1 Support Vector Regression 

The principle involved in Support Vector Regression is to find the best fit line according to the dataset 

called hyperplane. Both linear and non-linear kernels have been used to find the hyperplane in 

Support Vector Regression. This hyperplane has been developed in an N-dimensional space, where N 

is the number of explanatory variables. Then two marginal planes have also been created at a distance 

equal to ε from the hyperplane in both sides. The equations of these lines have been given as Equation 

(1), Equation (2) and Equation (3) below. 

Equation of hyperplane: 

                 (1) 

Equation of marginal planes: 

               (2) 

               (3) 

 

Figure 2: Support vector regression for data points inside the marginal planes. 
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The principle of Support Vector Regression has been shown in Figure 2. One of the most unique 

features that makes Support Vector Regression more significant in prediction is that it does not try to 

minimize the error between the actual observation and the predicted observation like other regression 

models. Rather it tries to fit the best line within the marginal planes expressed as Equation (2) and 

Equation (3). In this study, two support vector regression models (SVR-1 and SVR-2) have been built 

with two hyperparameter sets consisting c, kernel and gamma. 

 

c: The hyperparameter ‘c’ is inversely proportional to the size of the margin as well as the . The 

trade-off between the insensitive loss and the sensitive loss has been controled by this 

hyperparameter. The larger value of ‘c’ indicates smaller , while the smaller value of ‘c’ indicates the 

larger value of . Primarily larger values of ‘c’ as well as smaller margin helps to improve the 

regularization and solve the overfitting issue of the model. Furthermore, the insensitive loss will be 

minimized more with a larger value of ‘c’. In this study, two values of c have been used as 0.1 and 1 

for  SVR-1 and SVR-2 respectively. 

 

Kernel: Kernel is used to find the best suited hyperplane by transforming the data points into the 

required form. It separates the data points in either linear or non-linear manner. While a linear kernel 

catches the linear dependencies of the explanatory variables with the response variable, a non-linear 

kernel considers the non-linear dependencies also. In this study, two kernels such as ‘Linear’ and 

‘Radial Basis Function’ have been used for SVR-1 and SVR-2 respectively. 

 

Gamma: Another hyperparameter ‘Gamma’ has been used to control the distance of influence of the 

individual data points. 

 

The hyperparameters used in SVR-1 and SVR-2 have been listed in Table 2.3. 

 

Table 3: Hyperparameters for Support Vector Regression 
 

Hyperparameters SVR-1 SVR-2 

c 0.1 1 

Kernel Linear Radial Basis Function 

Gamma Scale Auto 

 

2.4.2 CatBoost Regression 

CatBoost Regression is a relatively new supervised machine learning algorithm which has been 

developed in 2017. The principle of this algorithm consists of two main features: the categorical data 

(the cat) and the gradient boosting (the boost). Although it has been suggested by many researchers 

that the CatBoost Regression has been also well suited to regression problems. CatBoost Regression 

incorporates a number of decision trees and improves the accuracy of the prediction through gradient 

boosting. Gradient boosting is a technique which combines relatively weak models and forms a better 

model by fitting the decision trees in a sequential manner. 

 

 
 

Figure 3: Sequential decision trees in CatBoost Regression 
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In Figure 2.3, it has been demonstrated that the sequential decision trees of CatBoost Regression have 

learnt from the previous trees and thus the loss function has been sequentially reduced. One of the 

distinct features of CatBoost Regression is that the decision trees grow symmetrically, while in 

Extreme Gradient Boosting, the trees grow depth-wise. Therefore, the nodes in CatBoost Regression 

remain at the same level and split at the same boundary condition. This precedure allows the CatBoost 

Regression to overcome the overfitting issue and develop a more generalized prediction model. In 

comparison to Extreme Gradient Boosting and other models, CatBoost Regression takes shorter time 

to perform. And it can be applied for both small and large datasets. 

 

2.5 Evaluation of the Model 

Once the model has been trained, it has been required to evaluate the model using the test dataset. 

There are lots of techniques for carrying out performance measurement as well as error metrics to 

evaluate the models. In this study, coefficient of determination (R2), Mean Absolute Error (MAE), 

Mean Absolute Percentage Error (MAPE), and Root Mean Squared Error (RMSE) have been used as 

error metrics. 

 

Formula of (R2): 

 

tot

res

ss

ss
−=1R 2

     (2.4) 

In Equation (3.7), 

 

SSres = Residuals sum of squares 

SStot = Total sum of squares 

 

Formula of MAE: 
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Formula of MAPE: 
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Formula of RMSE:  
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In Equation (2.4), Equation (2.5), Equation (2.6) and Equation (2.7), 

 

M = Error metrics 

At = Actual value 

Pt = Predicted value 

n = Number of observations 
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3. RESULT & DISCUSSION 

3.1 Support Vector Regression 

The error metrices for steel and concrete piles have been shown in Table 3.1 and Table 3.2 

respectively. It has been observed that SVR-2 has performed quite well for both steel and concrete 

pile as compared to SVR-1. This improvement has been brought through hyperparameter tuning. 

From further comparison between steel and concrete, it has also been observed that SVR-2 has 

predicted the bearing capacity of steel pile with more accuracy than that of the concrete pile. 

 

Table 4: Error metrics for Support Vector Regression (steel pile) 
 

Models 

Error Metrics 

R2 MAE MAPE (%) RMSE 

SVR-1 0.92 447.19 11.49 534.45 

SVR-2 0.95 410.39 10.52 489.68 

 

Table 5: Error metrics for Support Vector Regression (concrete pile) 
 

Models 

Error Metrics 

R2 MAE MAPE (%) RMSE 

SVR-1 0.80 688.64 26.71 753 

SVR-2 0.87 495.21 18.31 558.23 

 

The R2 values for steel and concrete pile have been found as 0.95 and 0.87 respectively from SVR-2. 

The other error metrices such as MAE, MAPE and RMSE have been found as 410.39, 10.52% and 

489.68 respectively for steel pile and 495.21, 18.31% and 558.23 respectively for concrete pile from 

SVR-2. Along with R2, the other error metrices have also shown that SVR-2 has performed with more 

accuracy for steel pile as compared to the concrete pile. From SVR-1, The R2 values for steel and 

concrete pile have been found as 0.92 and 0.80 respectively. The other error metrices such as MAE, 

MAPE and RMSE have been found from SVR-1 as 447.19, 11.49% and 534.45 respectively for steel 

pile and 688.64, 26.71% and 753 respectively for concrete pile. The R2 of SVR-2 for steel and 

concrete pile have been shown in Figure 3.1 and Figure 3.2 respectively. 
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Figure 4: R2 for steel pile (SVR-2) 

 

 
 

Figure 5: R2 for concrete pile (SVR-2) 

 

The variations of predicted bearing capacity with respect to actual bearing capacity for steel and 

concrete pile have been shown in Table 3.3 and Table 3.4 respectively and have been represented 

through bar chart in Figure 3.3 and Figure 3.4 respectively. 

 

Table 6: Actual vs predicted bearing capacity for steel pile 
 

Actual Observation 

(kN) 

Predicted Observation 

for SVR-1 (kN) 

Predicted Observation for 

SVR-2 (kN) 

4275 3381.73 3526.34 

2440 2374.11 2465.46 

4650 3873.18 3969.35 

3750 3216.55 3279.40 

2750 2868.54 2802.24 

2575 2302.71 2248.49 

4275 3804.94 3706.43 

 

Table 7: Actual vs predicted bearing capacity for concrete pile 
 

Actual 

Observation (kN) 

Predicted Observation 

for SVR-1 (kN) 

Predicted Observation 

for SVR-2 (kN) 

2682.5 2274.98 2303.45 

3142 2414.01 2616.61 

1295 2002.31 1651.83 

2825 2259.71 2476.79 

2880 2307.44 2610.37 

3867 2481.82 2772.95 

2490 2035.40 1996.66 
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Figure 6: Actual vs predicted bearing capacity for SVR-2 for steel pile 

 

 
 

Figure 7: Actual vs predicted bearing capacity for SVR-2 for concrete pile 

3.2 CatBoost Regression 

Although CatBoost and XGBoost have been based on Decision Tree algorithm, the trees are 

symmetrical in CatBoost Regression while they grow normal depth-wise in XGBoost Regression. 

Therefore, it has been found than the CatBoost has performed with quite good prediction accuracy as 

compared to other models in this study. The MAPE for CatBoost Regression has been found only 

6.01% for steel pile and only 9.41% for concrete pile. The error metrices have been shown in Table 

3.5. The other error metrices such as MAE, MAPE and RMSE have been found 177.84, 60.1% and 

208.07 respectively for steel pile and 231.76, 9.41% and 294.66 respectively for concrete pile. These 

error matrices have also been found less than the error metrices found from previous models. 

 

Table 8: Error metrics for Extreme Gradient Boosting Regression 
 

Error Metrices Steel Pile Concrete Pile 

R2 0.99 0.98 

MAE 177.84 231.76 

MAPE (%) 6.01 9.41 

RMSE 208.07 294.66 

 

The R2 of CatBoost Regression for steel and concrete pile have been shown in Figure 3.5 and Figure 

3.6 respectively. 

 

 
 

Figure 8: R2 for CatBoost Regression (steel pile) 
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Figure 9: R2 for CatBoost Regression (concrete pile) 

 

The variations of predicted bearing capacity with respect to actual bearing capacity for steel and 

concrete pile have been shown in Table 3.6 and Table 3.7 respectively and have been represented 

through bar chart in Figure 3.7 and Figure 3.8 respectively. 
 

Table 9: Actual vs predicted bearing capacity for CatBoost for steel pile 
 

Actual Observation (kN) Predicted Observation (kN) 

2440 2482.01 

4650 4337.70 

3750 3451.93 

1321 1440.19 

2750 2476.26 

6120 6074.35 

2575 2728.89 

1043 1319.07 

 

Table 10: Actual vs predicted bearing capacity for CatBoost for concrete pile 
 

Actual Observation (kN) Predicted Observation (kN) 

2880 2809.53 

2240.5 2390.05 

2490 2231.80 

2250 2462.49 

1235 1538.99 

2500 2514.45 

5215 4601.80 
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Figure 10: Actual vs predicted bearing capacity for CatBoost for steel pile 

 

 
 

Figure 11: Actual vs predicted bearing capacity for CatBoost for concrete pile 

3.3 Comparison between the models 

The error metrices for the models used in this study have been shown in Table 3.8 and Table 3.9 for 

steel and concrete pile respectively. 

 

Table 11: Error metrices for steel pile dataset 
 

Models R2 MAE MAPE (%) RMSE 

Support Vector 

Regression 

SVR-1 0.92 447.19 11.49 534.45 

SVR-2 0.95 410.39 10.52 489.68 

CatBoost Regression 0.99 177.84 6.01 208.07 

 

Table 12: Error metrices for concrete pile dataset 
 

Models R2 MAE MAPE (%) RMSE 

Support Vector 

Regression 

SVR-1 0.80 688.64 26.71 753.00 

SVR-2 0.87 495.21 18.31 558.23 

CatBoost Regression 0.98 231.76 9.41 294.66 
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4. CONCLUSIONS 

The study conducted a comprehensive comparison between CatBoost Regression and Support Vector 

Regression (SVR) in predicting the bearing capacity of piles, specifically focusing on steel and 

concrete piles. The results revealed that CatBoost Regression has performed quite well in predicting 

the bearing capacity of piles as compared to Support Vector Regression in the case of steel piles. It 

has also been found that machine learning algorithms can model the characteristics of steel piles better 

as compared to concrete piles. Hence the R2 value has been found 0.99 for the steel pile, while the R2 

value of the concrete pile has been found 0.98 in CatBoost Regression. The performance of CatBoost 

Regression in predicting the bearing capacity of steel piles has also been found satisfactory compared 

to the concrete pile. The Mean Absolute Percentage Error (MAPE) further underscored the predictive 

prowess of CatBoost Regression. For steel piles, the MAPE was found to be only 6.01%, indicating a 

high level of accuracy in predicting the bearing capacity. In comparison, concrete piles exhibited a 

slightly higher MAPE of 9.41%, still reflecting a commendable predictive performance. 

 

Since the accuracy of prediction obtained from CatBoost Regression and Support Vector Regression 

is satisfactory for steel and concrete piles respectively, these algorithms can be used in the practical 

field to predict the bearing capacity of piles. To improve the prediction accuracy, more advanced 

hyperparameter tuning can be carried out. Furthermore, some other advanced machine learning 

models along with deep learning models can be used to improve the accuracy in predicting the 

bearing capacity of a pile. 
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